DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy.

نویسندگان

  • Jo Vercammen
  • Goedele Maertens
  • Melanie Gerard
  • Erik De Clercq
  • Zeger Debyser
  • Yves Engelborghs
چکیده

Human immunodeficiency virus type 1 (HIV-1) integrase is essential for viral replication. Integrase inserts the viral DNA into the host DNA. We studied the association of integrase to fluorescently labeled oligonucleotides using fluorescence correlation spectroscopy. The binding of integrase to the fluorescent oligonucleotides resulted in the appearance of bright spikes during fluorescence correlation spectroscopy measurements. These spikes arise from the formation of high molecular mass protein-DNA complexes. The fluorescence of the free DNA was separated from the spikes with a statistical method. From the decrease of the concentration of free oligonucleotides, a site association constant was determined. The DNA-protein complexes were formed rapidly in a salt-dependent manner with site association constants ranging between 5 and 40 microm(-1) under different conditions. We also analyzed the kinetics of the DNA-protein complex assembly and the effect of different buffer components. The formation of the fluorescent protein-DNA complex was inhibited by guanosine quartets, and the inhibition constant was determined at 1.8 +/- 0.6 x 10(8) m(-1). Displacement of bound DNA with G-quartets allowed the determination of the dissociation rate constant and proves the reversibility of the association process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insight into the integrase-DNA recognition mechanism. A specific DNA-binding mode revealed by an enzymatically labeled integrase.

Integration catalyzed by integrase (IN) is a key process in the retrovirus life cycle. Many biochemical or structural human immunodeficiency virus, type 1 (HIV-1) IN studies have been severely impeded by its propensity to aggregate. We characterized a retroviral IN (primate foamy virus (PFV-1)) that displays a solubility profile different from that of HIV-1 IN. Using various techniques, includi...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Modeling HIV-1 integrase complexes based on their hydrodynamic properties.

We present a model structure of a candidate tetramer for HIV-1 integrase. The model was built in three steps using data from fluorescence anisotropy, structures of the individual integrase domains, cross-linking data, and other biochemical data. First, the structure of the full-length integrase monomer was modeled using the individual domain structures and the hydrodynamic properties of the ful...

متن کامل

Structural and Functional Role of INI1 and LEDGF in the HIV-1 Preintegration Complex

Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 41  شماره 

صفحات  -

تاریخ انتشار 2002